Upscaling: from Static to Dynamic Model

3 days Overview

LEVEL
Skilled

PURPOSE
This course provides participants with a clear understanding of the techniques related to upscaling.

LEARNING OBJECTIVES
Upon completion of the course, participants will be able to:
- recognize the techniques and challenges related to upscaling (properties, methods, validation),
- build required competencies to analyze reservoir heterogeneities in order to define the aggregation rate,
- apply the workflow for generating an upscaled grid using dedicated software Petrel™ and Eclipse™,
- validate the upscaled grid (static and dynamic models).

WAYS AND MEANS
Interactive presentations, hands-on real case study using software dedicated for reservoir modeling: Petrel™ and Eclipse™.
Software used during workshops: with courtesy of Schlumberger.

PREREQUISITES
Degree in geology or reservoir engineering, or equivalent experience, with basic knowledge in dynamic modeling.

Agenda

INTRODUCTION TO UPSCALING
Objectives of upscaling.
Why upscaling?
Aggregation rate, up-layering, heterogeneities, geological features.
Properties to upscale: porosity, net-to-gross, rock-types, saturation, permeability.

0.25 d

UPSCALING METHODS
Algebraic methods: Cardwell and Parsons.
Numerical methods: flow based method.
Criteria to choose the upscaling method.

0.5 d

VALIDATION
Static validation: volumes, histograms.
Dynamic validation: volumes, simulation results on fine and coarse grids, well transmissivity.

0.25 d

UPSCALING WORKSHOP: REAL CASE STUDY
Geological model: heterogeneities.
Facies proportion curves analysis.
Up-layering definition: choice of the most appropriate up-layering.
Zone division and zone mapping.

2 d
Scale-up properties methodology: choice of the most appropriate method.
Volume calculation: static validation.
Dynamic validation: simulation and comparisons with the fine model.
Synthesis and wrap-up.