Fluid Catalytic Cracking Operation
Optimization & Troubleshooting

<table>
<thead>
<tr>
<th>5 days</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAF/FCCSS-E</td>
</tr>
</tbody>
</table>

LEVEL
Skilled

PURPOSE
This course provides a comprehensive understanding of operating, monitoring and optimizing the catalytic section of the FCC process.

LEARNING OBJECTIVES
Upon completion of the course, the participants will be able to:
- understand the exact role and process of an FCC unit,
- analyze the importance and impact of operating parameters on product quality,
- know about main potential incidents, their origin, consequences on safety, health and the environment,
- apply the most common preventive measures.

WAYS AND MEANS
Applications, case studies based on typical industrial situations.

LEARNING ASSESSMENT
Quiz.

PREREQUISITES
No prerequisites for this course.

Agenda

OVERVIEW OF THE FCC PROCESS
- Aim of the fluid catalytic cracking unit and its place in the refining scheme.
- Characteristics of the feeds, impact on the process; incentive for conversion of heavy cuts.
- Mass balance, characteristics of the products and related treatments.

PLANT TYPICAL BALANCES
- Interpretation of the operating parameters:
 - Heat balance and catalyst flow rate.
 - Cracking conditions: thermal and catalytic severity, impact on operation and products.
 - Pressure balance, fluidization and catalyst circulation; #P of slide valve and safety.
 - Energy balance: heat recovery in the flue gas line and in the bottom pump-around.

FCC OPERATING PARAMETERS IN REACTION SECTION
- The following parameters:
 - Different modes of changing the catalyst circulation.
 - Control of the cracking temperature.
 - Effect of the feed temperature, flowrate and chemical composition.
Impact of acceleration or stripping steam. Pressure monitoring are investigated, as well as their effect on balances, #coke, regenerator temperature and yields.

CATALYST MONITORING

OPERATION & OPTIMIZATION
Different operating situations are analyzed to illustrate: optimization of LCO production; maximization of heavy feed processing under constraint of air flow rate limitation. Modification of the process for maximization of C₃ & C₄ olefins production, or maximization of gasoline.

INCIDENTS & TROUBLESHOOTING
Incidents of heat balance: coke build up, afterburning, lack of coke, etc. Incidents of pressure balance: low pressure drop, reverse flow, failure of the wet gas compressor. Incidents on the energy recovery circuits: loss of boiler level, loss of circulation in the bottom pumparound, etc. Main interlock configurations.